

TU Dresden, Chair of Meteorology

Modelling of the atmospheric boundary layer – Applications for wind energy

Astrid Ziemann, Manuela Starke, Valeri Goldberg and colleagues

Phenomenon during clear nights: low-level jet Measurement at forest clearing

High Resolution Vegetation-Atmosphere Coupler (HIRVAC)

Scheme of 1D HIRVAC version

TU Dresden, Astrid Ziemann

Modelling of the atmospheric boundary layer – applications for wind energy

Slide 3

(cc)

Ziemann, 2017

HIRVAC2D – vegetation parameters and effects on the wind field

→ Horizontal wind speed in m/s

TU Dresden, Astrid Ziemann

Modelling of the atmospheric boundary layer – applications for wind energy

DRESDE

conce

Recent projects with HIRVAC applications \rightarrow wind field

> Example 1: DFG priority program 1276 **Metström**

Project **TurbEFA** (Turbulent Exchange processes between Forested areas and the Atmosphere)

 \rightarrow to investigate the effects of forest edges and inhomogeneities in forests on the turbulence of atmospheric flows and their representation in numerical models

Model results: dependence of wind speed on the vegetation structure

Queck et al., 2014: DOI 10.1127/metz/2014/0567

- > Horizontal wind speed in m/s (lines), background: Plant Area Density (green area)
- HIRVAC2D simulation along a forest clearing
- Results from calculations with homogeneous (left) and measured (right) distribution of vegetation
- \rightarrow Heterogeneous vegetation \rightarrow more variable gradients of wind speed

TU Dresden, Astrid Ziemann

Recent projects with HIRVAC applications \rightarrow wind field

Supported by:

on the basis of a decision by the German Bundestag

Example 2: BMWi 6. Energy Research Programme

Project **QuWind100** (Quantitative wind climatalogy for wind energy applications at heights above 100 m)

 \rightarrow to model a wind climatology for Germany for present and future climate and landuse

TU Dresden, Astrid Ziemann

CC

Project QuWind100

Adopted from Starke, 2019

TU Dresden, Astrid Ziemann

Modelling of the atmospheric boundary layer – applications for wind energy

Model results: nocturnal low-level jet

Low-level jet (LLJ) → important phenomenon of the wind field at typical hub heights of wind turbines:

- Frequent phenomenon: in 10-20% of all nights in Germany
- Increasing wind speed in comparison to the log. wind profile (dashed line)
- Attention: wind shear within the swept rotor area

HIRVAC simulation (morning hour) over grassland:

→ height and max wind speed are dependent on day of the year

TU Dresden, Astrid Ziemann

Model results: development of nocturnal low-level jet

TU Dresden, Astrid Ziemann

Slide 10

(cc)

(i)

Model results: dependence of low-level jet on landuse

→ More LLJ events for grassland

TU Dresden, Astrid Ziemann

(00)

Model results: dependence of wind speed on daytime

Diurnal variations of wind speed at 100 m AGL induced by different wind speeds vg (colors), Vegetation: a 28 m high deciduous forest
More LLJ events for smaller values of vg

TU Dresden, Astrid Ziemann

Slide 12

(00)

Model results: dependence of wind speed on vegetation parameters

Daily averaged wind speed vh at different heights AGL (colors) and vegetation properties (height HP and leaf area index crown LAI_{top})

TU Dresden, Astrid Ziemann

Slide 13

Wind atlas for Germany: exemplary results (only influence of LU, 100 m AGL)

Averaged wind speed (m/s) for winter season present time (left) und landuse (right)

TU Dresden, Astrid Ziemann

Modelling of the atmospheric boundary layer – applications for wind energy

Open questions

- ➤ Heterogeneous environmental conditions (terrain, landuse, vegetation parameters) → challenges for wind power assessment, estimation of mechanical loads and short-term prediction of wind fields
- Evaluated models and parametrizations (->standardized models) are needed to simulate the wind field at hub heights with all important temporally and spatially variable features, especially lowlevel jets.
- How the properties of low-level jets are modified by a complex terrain with a heterogeneous landuse?
- Combination of suitable models for special process studies and enhanced parameter/sensitivity studies (wind climatology)
- Model comparison with adequate measurements (WindForS)

TU Dresden, Astrid Ziemann

Contact:

Astrid Ziemann

TU Dresden Chair of Meteorologie Pienner Str. 23 01737 Tharandt Germany

astrid.ziemann@tu-dresden.de

https://www.researchgate.net/profile/ Astrid_Ziemann

Thank you for your attention!

TU Dresden, Astrid Ziemann

Modelling of the atmospheric boundary layer – applications for wind energy

