

Welcome to the Energiewende

Germany goes Renewables!

Goals of the Energiewende:

Target	2020	2050
Share of renewable energies in total electricity consumption	35%	80%
Reduction of electricity consumption (base year 2008)	-10%	-25%

- Decentralized energy system with many interconnected power generating units
- Challenge: match a given electric load profile to the short-term power fluctuations

www.erneuerbare-jetzt.de

The VORKAST Project

Measurement Setup on the Swabian Alb

Stream Line XR

Lidar facts

- Maximum range: 10 km
- Pulse length: 410ns
- Measurement volume: ~80m
- Standard no. range gates: 167
- Trajectories: staring, DBS, VAD, RHI, custom,
 +wind direction dependent

Measurement Setup on the Swabian Alb

An unobstructed view

Which Answers need to be found?

1. Filter algorithms

How can the radial velocities be filtered?

Device alignment

How can the exact position of the device and the measurement point be determined?

Correlation with met mast

Are the lidar measurement comparable with conventional measurement techniques?

Wind field reconstruction

How do I have to measure to be able to reconstruct the wind field precisely in great distances?

Wind evolution/ -prediction

How does the wind field evolve over great distance and which influence does that have on the prediction?

How can the radial velocitiy be filtered?

Input Parameter: CNR Radial velocity
 Filter techniques: CNR Velocity estimation

- Filter requirements: > Conservative filtering with least possible data loss
 - Working for all environmental conditions
 - Near real-time capability

Raw data

Radial velocity

Raw data

CNR threshold

Velocity range filter

Velocity estimation

Standard deviation filter

How can the exact position of the device and the measurement point be determined?

Free sectors: 360° azimuth scan

How can the exact position of the device and the measurement point be determined?

- Free sectors: 360° azimuth scan
- Rough Alignment: Hard target detection with surrounding turbines

How can the exact position of the device and the measurement point be determined?

- Free sectors: 360° azimuth scan
- Rough alignment: Hard target detection with surrounding turbines
- Precise alignment: detailed scanning of single turbine

How can the exact position of the device and the measurement point be determined?

- Free sectors: 360° azimuth scan
- Rough alignment: Hard target detection with surrounding turbines
- Precise alignment: detailed scanning of single turbine

Correlation with met mast

Are the lidar measurements comparable with conventional measurement

techniques? Streamline Doppler vs. Metmast Sonic 98m Fit: $y = 1.0467x + -0.51261 (R^2 = 0.83833)$ v_{sonic} LOS v_{sonic} $v_{los,sonic}$ LOS Streamline Doppler v_{LOS} [m/s]

Wind Field Reconstruction

How do we have to measure to be able to reconstruct the wind field correctly in great distances?

$$u_i = v_0 + \delta_H y_i + \delta_V z_i$$
$$v_i = w_i = 0$$

$$v_{los,i} = \frac{x_i}{f_i} u_i + \frac{y_i}{f_i} v_i + \frac{z_i}{f_i} w_i$$

$$\underbrace{\begin{bmatrix} v_{los,1} \\ \vdots \\ v_{los,n} \end{bmatrix}}_{m} = \underbrace{\begin{bmatrix} \frac{x_1}{f_1} & \frac{x_1}{f_1} y_1 & \frac{x_1}{f_1} z_1 \\ \vdots & \vdots & \vdots \\ \frac{x_n}{f_n} & \frac{x_n}{f_n} y_n & \frac{x_n}{f_n} z_n \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} v_0 \\ \delta_H \\ \delta_V \end{bmatrix}}_{S}$$

very simple wind model (assuming no tilted inflow or misalignment)

lidar measurement equation

$$\begin{bmatrix} v_0 \\ \delta_H \\ \delta_V \end{bmatrix} = A^{-1} \begin{bmatrix} v_{los,1} \\ v_{los,2} \\ v_{los,3} \end{bmatrix}$$

solution for n = 3 measurements with **inverse** A^{-1} , else with **Moore-**Penrose pseudoinverse A^+

Wind Field Reconstruction

How do we have to measure to be able to reconstruct the wind field correctly in great distances?

Questions to answer:

- Trajectory of lidar measurements
- How many measurements points to use for the reconstruction

Wind Evolution/ -prediction

How does the wind field evolve over great distance and which influence does that have on the prediction?

Questions to answer:

- Can Taylor be applied?
- How big is the effect of the terrain?

Solution: Second measurement campaign

- Lidar mounted on a turbine
- Use rotor effective wind speed as reference
- Apply dynamic model based wind field reconstruction
- ➤ Raach et all. :Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data, Torque 2014 Torque

Thank you!

Ines Würth

e-mail wuerth@ifb.uni-stuttgart.de

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages

